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EXECUTIVE SUMMARY 
 

This project is a follow-up to Florida Department of Transportation (FDOT) research project 

BD545-61, “Impact of Lane Closures on Roadway Capacity” (specifically, Part A: Development 

of a Two-Lane Work Zone Lane Closure Analysis Procedure and Part C: Modeling Diversion 

Propensity at Work Zones).  In this previous project, the primary objective was to update the 

procedure in the Plans Preparation Manual (PPM), Volume 1, Section 10.14.7 (2006), for two-lane 

roadways.  Field data collection was not included in the previous project; thus, the results were 

based strictly on simulation data from the FlagSim simulation program. 

Before the preceding research project, the FDOT developed an analysis procedure for two-

lane roadways with a lane closure that was a relatively simple deterministic procedure, with rough 

approximations for work zone capacity and other important parameter values.  Through the 

previous project (BD545-61), a new analysis procedure was developed that is sensitive to the major 

factors that influence work zone performance measures.  However, the main limitation from the 

BD545-61 project was the lack of field data to use for calibrating the various simulation 

parameters. 

Another aspect of the BD545-61 project was to develop a method to estimate the amount of 

traffic diversion that occurs at a work zone location.  The previous analysis procedure in the PPM 

included the “Remaining Traffic Factor” (RTF) term.  This term accounts for “The percentage of 

traffic that will not be diverted onto other facilities during a lane closure” (FDOT, 2006 PPM).  

The value to use for this input was left strictly to the analyst’s judgment, as there was no method 

or quantitative guidance provided.  Again, since field data were not available in the BD545-61 

project, a stated preference (SP) survey, via telephone, approach was used to develop a method to 

estimate that amount of traffic diversion that will occur at a work zone site. 
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The primary objective of this project was to update the two-lane roadway with lane closure 

analysis procedure developed under the previous project based on calibrating the FlagSim 

simulation program to field data.  An additional aspect of this that was not considered in the 

BD545-61 project was to account for the effect of grade on the work zone performance measures.  

An additional project objective was to update the RTF estimation method developed under the 

BD545-61 project, as necessary, based on measured traffic demands (before and during) at field 

sites. 

Field data were collected from three sites.  Two of these sites were in fairly rural locations, 

which featured longer lane closure lengths and lower demand volumes.  The third site was less 

rural in nature and featured shorter lane closures and higher demand volumes.  All three sites were 

located in the north-central Florida region.  From the field data, values for factors critical to the 

calibration of FlagSim were determined, such as startup lost time, saturation headway, travel speed 

through the work zone, flagging right-of-way changing behavior, etc. 

After FlagSim was calibrated to the field conditions, it was then used to generate the data 

used to update the models contained in the analysis procedure developed under the previous 

project.  Specifically, models for average work zone travel speed, average saturation headway, 

total queue delay, and maximum queue length were updated.  The models were updated in the 

analysis worksheet tool. 

The RTF task aimed to refine the estimation model proposed in Phase 1 using field-observed 

diversion data.  The binary Logit model developed in Phase 1 was calibrated based on SP survey 

data, and SP data tend to overestimate the diversion rate in work zones.  The aggregate traffic data 

collected in a work zone on SR-20 confirmed this phenomenon.  A simplistic methodology is 

adopted primarily due to limitations in data availability and quality.  The constant coefficient 
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associated with the original route is adjusted to fix the overestimation problem while retaining the 

preference structure of the estimated route choice model.  The recalibrated model was incorporated 

into the RTF modeling framework proposed in Phase 1 by updating the route choice model. 
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CHAPTER 1 
INTRODUCTION 

 

This project is a follow-up to Florida Department of Transportation (FDOT) research project 

BD545-61, “Impact of Lane Closures on Roadway Capacity” (specifically, Part A: Development 

of a Two-Lane Work Zone Lane Closure Analysis Procedure and Part C: Modeling Diversion 

Propensity at Work Zones).  In this previous project, the primary objective was to update the 

procedure in the Plans Preparation Manual (PPM), Volume 1, Section 10.14.7 (2006), for two-lane 

roadways.  Field data collection was not included in the previous project; thus, the results were 

based strictly on simulation data from the FlagSim simulation program (described in Appendix C). 

Some material in this report is repeated from the previous project report to minimize the 

need to reference the previous report, starting with an overview of two-lane roadway lane closure 

configuration and operations.  Two-lane roadway work zone configurations consist of a single lane 

that accommodates both directions of flow, in an alternating pattern, as illustrated in Figure 1. 

 

Figure 1: Two-lane work zone operated with flagging control 

 

These work zones typically employ a flagging control person (i.e., someone who operates a 

sign that gives motorists instructions to stop or proceed) at both ends to regulate the flow of traffic 

through the work zone.  In some situations (usually where the lane closure is long or there are a 
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large number of driveways), a lead vehicle, called a pilot car, may be required to lead the platoon 

of vehicles through the work zone.  

Significant delay is incurred by motorists due to the lost time that accrues while the opposing 

direction has the right-of-way.  Additionally, both directions incur lost time when there is a change 

in the right-of-way as the last vehicle that received the right-of-way must traverse the entire length 

of the work zone; therefore, all vehicles must wait until the last vehicle has passed the opposite 

stop location.  The queue discharge process is similar to the operation of a signalized intersection, 

but the queue discharge rate may be lower due to driver caution and various work zone factors and 

activities. 

Changing of the right-of-way is rarely performed in an optimal manner.  Flag persons are 

not trained on how to switch the right-of-way in such a manner as to minimize delay, or otherwise 

optimize some particular performance measure (Evans, 2006).  Generally, flag persons change the 

flow direction due to queue and cycle length.  The queue at the beginning of the “green” period 

discharges at the saturation flow rate.  After the initial queue dissipates, flag persons usually extend 

the green to allow for vehicles still arriving.  This extension time can be lowered if there is a 

significant queue in the opposite direction.  At this point, the flow through the work zone will drop 

to the arrival rate.  The arrival rate can be significantly lower than the queue discharge rate on low 

volume roadways, thus increasing the overall average delay if vehicles are queuing at the opposite 

approach (Cassidy and Son, 1994). 

The typical performance measures for evaluating a work zone with flagging operations are:  

 Capacity – maximum vehicle throughput 

 Delay – time spent not moving, or at a slower speed than desired 

 Queue length – vehicle arrivals minus vehicle departures for a specified length of time 
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Problem Statement 

Since there is not a single accepted national standard for analyzing work zone operations and 

estimating performance measures, such as might be provided by the Highway Capacity Manual 

(HCM) (TRB, 2010), transportation agencies are tasked with developing their own methods or 

adopt/adapt ones from existing methods.  Before the preceding research project, the FDOT 

developed an analysis procedure for two-lane roadways with a lane closure that was a relatively 

simple deterministic procedure, with rough approximations for work zone capacity and other 

important parameter values.  Through the previous project (BD545-61), a new analysis procedure 

was developed that is sensitive to the major factors that influence work zone performance 

measures.  However, the main limitation from the BD545-61 project was the lack of field data to 

use for calibrating the various simulation parameters.  While some of these parameters were set 

based on results of field data collection at signalized intersections from a previous FDOT research 

project (BD545-51, Washburn and Cruz-Casas, 2007), it is likely that there are still a number of 

significant differences in the queue accumulation and discharge process at two-lane roadway lane 

closure sites.  Furthermore, the extent to which conditions within the work zone might further 

reduce drivers’ desired speed, relative to the posted speed, was not known.  Another aspect of the 

BD545-61 project was to develop a method to estimate the amount of traffic diversion that occurs 

at a work zone location.  The previous analysis procedure in the PPM included the ‘Remaining 

Traffic Factor’ (RTF) term.  This term accounts for “The percentage of traffic that will not be 

diverted onto other facilities during a lane closure.” (FDOT, 2006 PPM)  The value to use for this 

input was left strictly to the analyst’s judgment, as there was no method or quantitative guidance 

provided.  Again, since field data were not available in the BD545-61 project, a stated preference 

(SP) survey, via telephone, approach was used to develop a method to estimate that amount of 

traffic diversion that will occur at a work zone site. 
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Research Objective and Supporting Tasks 

The primary objective of this project was to update the two-lane roadway with lane closure analysis 

procedure developed under the previous project based on calibrating the FlagSim simulation 

program to field data.  An additional aspect of this that was not considered in the BD545-61 project 

was to account for the effect of grade on the work zone performance measures.  An additional 

project objective was to update the RTF estimation method developed under the BD545-61 project, 

as necessary, based on measured traffic demands (before and during) at field sites.  The tasks that 

were conducted to support completion of the objectives were as follows: 

 Collected work zone operations data at three lane closure sites in north-central Florida. 

 Reduced and analyzed the field operations data. 

 Developed models for estimating work zone travel speed and saturation headway based 
on the field data. 

 Calibrated various FlagSim input parameters to yield a good match between simulated 
work zone traffic operations and field work zone operations. 

 Incorporated a new truck acceleration model into FlagSim (the same model used in 
FDOT Project BDK77-977-15) and updated truck characteristics in FlagSim based on 
analysis of weigh-in-motion (WIM) data from several two-lane highway sites. 

 Developed models for estimating work zone travel speed, saturation headway, queue 
delay, and queue length based on simulation data. 

 Revised the analysis procedure spreadsheet developed under the previous project to 
reflect the updated models developed in this project. 

 Collected local area traffic demand data at each field site, before and during the lane 
closure, (this was performed by FDOT staff) and analyzed the data. 

 Updated the RTF estimation model based on the field site local area traffic counts. 

Document Organization 

The remaining chapters in this report are organized as follows.  Chapter 2 provides a brief overview 

of the results of the preceding project as well as an overview of the original FDOT PPM procedure 
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(this material is repeated from the BD545-61 project report).  Readers interested in other research 

efforts and/or analysis tools applicable to two-lane roadways with a lane closure should consult 

Chapter 2 of the BD545-61 project report.  Chapter 3 describes the field site data collection, 

analysis, and model development.  Chapter 4 describes the simulation calibration effort, the 

incorporation of the effect of grade, and the development of the final models to be incorporated 

into the analysis spreadsheet tool.  Chapter 5 provides a step-by-step overview of the analysis 

procedure.  Chapter 6 describes the results of the RTF task. 

 

 



 

 6 

CHAPTER 2 
REVIEW OF PREVIOUS FDOT ANALYSIS METHODS 

 
This chapter presents a summary of the original FDOT PPM analysis procedure for two-lane 

roadways with a lane closure and a summary of the results of the previous project (BD545-61). 

Original FDOT PPM Analysis Procedure 

The FDOT developed a lane closure analysis procedure for use with all road type classes.  

The procedure is in the Plans Preparation Manual (PPM), Volume I, Section 10.14.7 (2006).  The 

procedure can analyze two-lane two-way work zones.  In order to accommodate flagging 

operations, the procedure attempts to determine the peak hour volume and the restricted capacity.  

From these two values, the time during when lane closures can occur without creating excessive 

delays is determined. 

This procedure’s main limitation is that capacity is an input, and the given capacities were 

not specific to two-lane work zones.  With capacity not based on a flagging work zone value, the 

procedure quite likely will be unable to model the field conditions accurately.  Another limitation 

with modeling flagging operations with this procedure is that it is based on only the ratio of green 

time to the cycle length.  This assumption does not take in to account the differences in delays of 

flagging operations, such as the lost time due to the traversing the work zone, startup lost time, 

and the variation of extended green time. 

The capacity is adjusted by the work zone factor (WZF) shown in Table 1.  The WZF is used 

instead of a calculated travel time based on a typical speed.  All of the lost time is also incorporated 

in to the WZF.  This is a simplistic adjustment to incorporate these important factors.  The travel 

time through the work zone is an easy calculation, which would make a logical factor.  One of the 

problems is the WZF is not adjusted by speed and is not documented by what speed the factor is 

based on.  This is an important question, as speeds through a work zone can be quite different for 
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an intense construction operation like chip and seal versus a less intense operation such as shoulder 

work.   

Table 1.  FDOT PPM Analysis Method Work Zone Factor (WZF) 

 
 

The FDOT PPM lane closure analysis procedure is as follows: 

1. Select the appropriate capacity (c) from the table below: 

LANE CLOSURE CAPACITY TABLE 

Capacity (c) of an Existing 2-Lane-Converted to 2-Way, 1-Lane=1400 veh/h 

Capacity (c) of an Existing 4-Lane-Converted to 1-Way, 1-Lane=1800 veh/h 

Capacity (c) of an Existing 6-Lane-Converted to 1-Way, 1-Lane=3600 veh/h 

Therefore, for a two-lane highway work zone, the capacity (c) is 1400 veh/h. 

2. The restricted capacity (RC) is then calculated taking into consideration the following 

factors: 

TLW = Travel Lane Width 

LC = Lateral Clearance.  This is the distance from the edge of the travel lane to the 
obstruction (e.g., Jersey barrier) 

WZF = Work Zone Factor.  This factor is proportional to the length of the work zone.  It 
is only used in the procedure for two-lane two-way work zones. 

WZL (ft.) WZF WZL (ft.) WZF WZL (ft.) WZF
200 0.98 2200 0.81 4200 0.64
400 0.97 2400 0.8 4400 0.63
600 0.95 2600 0.78 4600 0.61
800 0.93 2800 0.76 4800 0.59
1000 0.92 3000 0.74 5000 0.57
1200 0.9 3200 0.73 5200 0.56
1400 0.88 3400 0.71 5400 0.54
1600 0.86 3600 0.69 5600 0.53
1800 0.85 3800 0.68 5800 0.51
2000 0.83 4000 0.66 6000 0.5
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OF = Obstruction Factor.  This factor reduces the capacity of the travel lane if the one of 
the following factors violates their constraints: TLW less than 12 ft and LC less than 6 ft. 

G/C = Ratio of green time to cycle time.  This factor is applied when the lane closure is 
through or within 600 ft of a signalized intersection. 

ADT = Average Daily Trips.  This value is used to calculate the design hourly volume. 

The RC for roadways without signals is calculated as follows: 

RC (Open Road) = c  OF  WZF [1] 

If the work zone is through or within 600 feet of a signalized intersection, then RC is 

determined by applying the following additional calculation. 

RC (Signalized) = RC (Open Road)  G/C [2] 

If Peak Traffic Volume ≤ RC, there is no restriction on the lane closure.  That is, if the 

peak traffic volume is less than or equal to the restricted capacity, the work zone lane 

closure can be implemented at any time during the day.  

If Peak Traffic Volume > RC, calculate the hourly percentage of ADT at which a lane 

closure will be permitted. 

Open Road% = 
RTFPSCFDATC

OpenRoadRC


)(

 [3] 

where 

ATC = Actual Traffic Counts.  The hourly traffic volumes for the roadway during the 
desired time period.  

D = Directional distribution of peak hour traffic on multilane roads. This factor does not 
apply to a two-lane roadway converted to two-way, one-lane.  

PSCF = Peak Season Conversion Factor 
RTF = Remaining Traffic Factor.  The percentage of traffic that will not be diverted onto 

other facilities during a lane closure.  
Signalized% = (Open Road %)  (G/C) 

Plot the 24-hour traffic, relative to capacity, to determine when a lane closure is 

permitted. 
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Revised Analysis Procedure through FDOT Project BD545-61 

Overall Analysis Procedure 

As described above, the original FDOT analysis procedure in the PPM is fairly simple and 

considers a limited number of factors.  Consequently, there is a very limited range of field 

conditions for which this method will yield reasonably accurate results.  Furthermore, the only 

output from the method is work zone capacity.  The objective of project BD545-61was to develop 

an analysis procedure for two-lane roadway work zones (with a lane closure) that was more robust, 

both in terms of inputs and outputs, than the FDOT’s current PPM method.  The FDOT also had 

the requirement that this new procedure still be easy to use. 

A custom microscopic simulation program, FlagSim, was used to generate the data used in 

the development of the models contained in the new analysis procedure.  Specifically, models were 

developed to estimate work zone travel speed, saturation headway, queue delay, and queue length, 

as follows. 

i

ii

HVLMin

PostedSpddWorkZoneSp




1063336.0)10560),5280((

000601.0706381.0608474.4
 [4] 

 
where 

WorkZoneSpdi = estimated average travel speed of vehicles through the work zone for 
direction i (mi/h) 

PostedSpdi = the posted speed, or maximum desirable travel speed of vehicles, through the 
work zone for direction i (mi/h) 

L = work zone length (mi) 
HVi = percentage of heavy vehicles in the traffic stream for direction i 

 

    














 137.2

100
145)45,(00516.0192.1_

i
iisat

HV
speedMinh  [5] 

where 

isath _ = saturation headway for direction i (s/veh) 

speedi = average travel speed downstream of stop bar for direction i (veh/h) 
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HVi = percentage of heavy vehicles in the traffic stream for direction i 
   

iii

iii

gHVg

CsvCgyTotalQDela




001376.0148503.0

003387.0(%)/242061.0(%)/276980.0
 [6] 

where 

TotalQDelayi = total queue delay for a 1-hr time period for direction i (veh-hr) 
(gi /C) = average effective green time to average cycle length ratio for direction i (expressed 
as a percentage) 
(v/s)i = volume to saturation flow rate ratio for direction i (expressed as a percentage) 
C = average cycle length (sec) 

ig = average green time for direction i (sec) 

HVi = percentage of heavy vehicles in the traffic stream for direction i 
 

   
iii

iii

gHVg

CsvCgngthMaxQueueLe




003199.0299197.0

0006855.0(%)/598965.0(%)/616983.0
 [7] 

where 

MaxQueueLengthi = average maximum queue length per cycle for direction i (veh/cycle) 
Other terms are as previously defined. 

 

The analysis procedure also employs calculation elements consistent with the analysis of 

signalized intersections.  This procedure is much more robust than the original PPM procedure, 

and the results match well with the simulation data.  The analysis procedure was implemented into 

an easy-to-use spreadsheet format.  Screen captures of the analysis spreadsheet are shown in Figure 

2 and Figure 3. 
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Figure 2.  Analysis worksheet tool developed in FDOT project BD545-61 screen capture (1-hour 
analysis) 
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Figure 3. Analysis worksheet tool developed in FDOT project BD545-61 screen capture (24-
hour analysis) 

 
While it was felt that the results of this project (BD545-61) provided significant improvements 

over the existing FDOT PPM procedure, there were several areas that were identified that could 

benefit from additional research, as follows: 

 One obvious limitation to the results of this project is the lack of field data for 
verification/validation of several aspects of the simulation program.  Although certain 
parameter values used in the simulation program were compared for consistency to 
field data values obtained from the Cassidy and Son research (1994), most of their field 
sites utilized a pilot car; thus, their parameter values may not be directly comparable to 
sites that do not use a pilot car.  Field data should be collected at several sites, under 
only flagging control, to confirm the following factors: 

o Saturation flow rates and/or capacities 
 What are typical values, and how do they differ due to traffic stream 

composition? 
 Are they different by direction, e.g., due to the required lane shift in 

one direction? 
o Travel speeds through the work zone 

 Are they related to, or independent of, posted speed limits? 
 Are they different by direction due to the lane crossover at the 

beginning of the work zone?  Son (1994) states from their literature 
review that vehicles in the blocked travel direction usually have lower 
speeds than the opposite direction. 

o Startup lost time 
 What are typical values? 
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 Are they different by direction? 
o Flagging methods 

 Is a gap-out strategy ever applied, and if so, how? 
 Is a maximum green time used, and if so, what value? 
 Is a green time extension used, and if so, what value? 

 

Remaining Traffic Factor (RTF) Task  

When estimating the hourly traffic demand, the FDOT PPM procedure applies a "Remaining 

Traffic Factor" (RTF) to the observed hourly traffic demand without the lane closure.  The RTF 

accounts for possible traffic diversion during the lane closure.  However, no guidance has been 

offered on how to obtain the value of the RTF in the PPM. 

The purposes of this research task were twofold.  First, diversion behaviors at work zones 

were modeled in a discrete choice modeling framework.  A stated preference survey was carried 

out to obtain the data on drivers’ diversion propensity from work zones.  By calibrating a Logit 

model with the data, we identified three major factors that influence drivers’ diversion decisions, 

namely, travel time, work zone location, and weather condition.  For other factors, such as trip 

purpose and drivers’ social economic characteristics, we found no evidence that they are important 

in drivers’ decision making about diversion at work zones.  The calibrated model provides us with 

more insight on drivers’ work zone diversion behaviors and may be used to forecast diversion rates 

or be incorporated into a work zone traffic analysis tool. 

Second, we proposed two procedures, namely open-loop and closed-loop, to apply the 

calibrated binary Logit model to estimate the RTF.  The former directly applies the choice model 

without considering the feedback of remaining and diverted flows on travel times.  It may be more 

appropriate to be used for a short-term work zone lane closure.  The latter applies the notion of 

equilibrium to maintain the consistency between travel times and flows at different routes.  

Therefore, it may better replicate the situation at a long-term work zone.  Based on the 
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combinations of the weather condition and work zone location, four Fisk’s stochastic user 

equilibrium models have been formulated, which can be solved by the Excel solver to compute the 

RTF.  An Excel tool was developed to facilitate the computation, screen captures of which are 

shown below in Figure 4 and Figure 5. 

 
Figure 4.  RTF estimation spreadsheet tool developed in FDOT project BD545-61 screen capture 

(1) 

 

 
Figure 5.  RTF estimation spreadsheet tool developed in FDOT project BD545-61 screen capture 

(2) 
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CHAPTER 3 
FIELD DATA COLLECTION AND ANALYSIS 

 
This chapter describes the data requirements for calibration of the FlagSim simulation program.  

This is followed by discussion on the sites where data were collected, the data collection procedure 

undertaken, and a brief description of the data collected at these sites.  The data processing 

procedure is then described, and results from this processing are presented and discussed.  Lastly, 

the work zone speed and saturation headway models developed from the field data are presented. 

Data Requirements 

In order to calibrate the FlagSim simulation program to field conditions, it was first necessary to 

identify what type of data were necessary to perform this task.  Based on the simulation program 

internal models and possible outputs from this program, the following data parameters were 

identified: 

 Length of lane closure 

 Posted speed in work zone 

 Posted speed of work zone approach 

 Travel time of each vehicle through work zone for each phase 

 Vehicle type of each vehicle entering the work zone per phase 

 Number of vehicles entering the work zone per phase  

 Average speed of vehicles in the work zone per phase 

 “Green” time per phase 

 Startup lost time per phase 

 Queue delay per phase 

 Queue length per phase 

 Saturation headway per phase  
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 Type of flagging control used at the lane closure 

 

These parameters collectively comprise the inputs and outputs of the FlagSim program.  In 

addition, it was also necessary to obtain some data regarding traffic operations within the lane 

closure.  Specifically, how traffic operations were impacted by construction taking place in the 

work zone. 

Description of Study Sites 

To facilitate the calibration of the FlagSim program, it was necessary to identify several study sites 

that provided different traffic characteristics and work zone conditions.  Ultimately, field data were 

collected from three sites.  Two of these sites were in fairly rural locations, which featured longer 

lane closure lengths and lower demand volumes.  The third site was less rural in nature and featured 

shorter lane closures and higher demand volumes.  The general location of these sites is indicated 

in Figure 6.  Each of these sites is discussed in more detail in the following sections. 

 
Figure 6.  Work zone site locations 
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Site 1 Description 

The first field site identified was located on SR-145 between the cities of Madison, FL and 

the Florida/Georgia border.  This road is a frequent logging route and features a large percentage 

of heavy vehicles.  It is more rural in nature, and the total AADT on this road was approximately 

2000 in 2010.  The length of lane closures on this roadway varied between 1.29 and 1.95 miles.  

The distance weighted average of the posted speed in these lane closures was mainly 55 mi/h, 

while one lane closure had an average posted speed of 60 mi/h.  Construction activities consisted 

mainly of milling and resurfacing.  Figure 7 shows a general map of the location of the construction 

along this road.  It should also be noted that a few access roads are located along this stretch of 

road and had some contribution to the traffic through the lane closures.  These roads primarily 

provide access to residential neighborhoods. 

 
Figure 7.  Extent of construction along SR-145 (site 1) 
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Site 2 Description 

The second field site identified was located on SR-235 between the cities of Alachua, FL 

and La Crosse, FL.  This road is more rural in nature, and the total AADT on this road was 

approximately 2800 in 2010.  The length of lane closures on this roadway varied between 1.63 and 

2.00 miles.  The distance weighted average of the posted speed in these lane closures was 55 mi/h.  

Construction activities consisted mainly of milling and resurfacing.  Occasional access roads are 

located along this stretch of road.  These roads primarily provide access to more rural residences 

although a couple provided access to religious institutions.  Figure 8 shows a map of where 

construction was being performed along this stretch of road. 

 
Figure 8.  Extent of construction along SR-235 (site 2) 
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Site 3 Description 

The third field site identified was located on SR-20 between the city of Hawthorne, FL and 

the intersection of SR-20 and SR-21.  This road is heavily trafficked by commuters in the both the 

morning and afternoon.  As a result, this road is less rural in nature during these peak periods and 

features larger volumes of traffic compared to sites 1 and 2.  The total AADT on this road was 

approximately 8200 in 2010.  The length of lane closures on this roadway varied between 0.74 and 

1.63 miles with only one lane closure being over 1 mile.  The distance weighted average of the 

posted speed in these lane closures was mainly 55 mi/h, while one lane closure had an average 

posted speed of 50 mi/h.  Construction activities performed at this site primarily consisted of 

shoulder reconstruction and sodding.  Figure 9 shows a map of the location of the construction 

along this road.  Occasional access roads are located along this stretch of road.  These roads can 

serve as alternate routes to the nearby city of Hawthorne and SR-21. 

 
Figure 9.  Extent of construction along SR-20 (site 3) 
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Data Collection Procedure 

To obtain adequate data for calibration of the FlagSim simulation program, it was desirable to 

obtain approximately 4 hours of data each day for 4 different days at each of the three study sites.  

Due to the microscopic nature of the data required for this study, video was selected as the method 

by which to collect the data.  For each study site, stationary cameras were placed at each end of 

the lane closures to observe vehicles entering and exiting the work zone, queuing at the work zone, 

and flagging operations.  The video feed was recorded to an external hard drive recorder which 

was secured in a Pelican case next to the camera.  Both the camera and hard drive recorder were 

powered by a single 12-volt battery.  An example of the type of equipment and set up used to 

collect the data is shown in Figure 10. 

 
Figure 10.  Video camera and external hard drive recorder setup used for data collection 
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In addition to obtaining data at the entrances to the work zones, it was also desirable to obtain 

some data on the traffic operations within the lane closure.  In order to obtain information about 

these traffic operations, an instrumented Honda Pilot was driven through the work zone along with 

regular traffic.  This vehicle was equipped with cameras that recorded video of each trip that was 

made through the work zone.  This video was used to obtain information about other factors within 

the work zone, such as available lane width, construction activity, and construction vehicle 

presence that may have a significant impact on vehicles’ travel times through the work zone.  It 

was desired to record approximately 12 trips through the work zone (6 in each direction) for each 

couple of hours of data collection at each site.  Figure 11 shows the instrumented vehicle used for 

the data collection. 

 
Figure 11.  Instrumented Honda Pilot used to collect data inside work zone 
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Description of Data Obtained from Study Sites 

Video from Stationary Cameras 

A total of 34.5 hours of data was obtained from the three study sites.  Data for site 1 were 

collected on 10/25/2011, 10/27/2011, and 10/28/2011.  Approximately 4 hours of data was 

collected on 10/25/2011 and 10/27/2011, while 3 hours of data were collected on 10/28/2011.  

Figure 12 shows a frame capture from one of the videos recorded at this site. 

 
Figure 12.  Entrance to work zone at site 1 on 10/25/2011 

 

Data for site 2 were collected on 02/01/2012, 02/03/2012, 02/06/2012, 02/08/2012, and 

02/09/2012.  Unfortunately, the data collected on 02/01/2012 did not prove useful as it contained 

very minimal amounts of traffic (only 1 to 3 vehicles in queue).  This very low traffic demand does 

not lend itself well to reliable calibration of the FlagSim program.  As a result, these data was not 
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used for the purposes of this project.  Approximately 13.5 hours of data were collected on the 

remaining three days at the site.  Specifically, 6, 2.5, 1.5, and 3.5 hours of data were collected on 

02/03/2012, 02/06/2012, 02/08/2012, and 02/09/2012, respectively.  Figure 13 shows a frame 

capture from one of the videos recorded at this site. 

 

 
Figure 13.  Entrance to work zone at site 2 on 2/3/2012 

 

Data were collected from site 3 on 01/21/2013, 01/23/2013, 01/24/2013, and 01/25/2013.  Because 

this site featured shorter lane closures, it was necessary for the construction crew to move the 

location of the lane closure more frequently as the construction progressed throughout the day.  As 

a result, the length and location of the lane closure varied throughout each day.  Approximately 10 

hours of data were collected at this site.  Specifically, 2, 2.5, 3, and 2.5 hours of data were collected 
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on 01/21/2013, 01/23/2013, 01/24/2013, and 01/25/2013, respectively.  Figure 14 shows a frame 

capture from one of the videos recorded at this site. 

 
Figure 14.  Entrance to work zone at site 3 on 1/25/2013 

 

Video from Instrumented Honda Pilot 

A total of 117 trips were made through the various work zones at the three sites.  Fifty-one 

trips were made at site 1, 29 trips were made at site 2, and 37 trips were made at site 3.  Figure 15, 

Figure 16, and Figure 17 show frame captures from the in-vehicle videos recorded at sites 1, 2, 

and 3, respectively. 
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Figure 15.  Video from instrumented Honda Pilot at site 1 on 10/25/2011 
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Figure 16.  Video from instrumented Honda Pilot at site 2 on 2/9/2012 
 

 
Figure 17.  Video from instrumented Honda Pilot at site 3 on 1/24/2013 

 



 

 27 

Data Processing 

Once the data had been collected at a lane closure site, it was necessary to process these data to 

obtain the information needed for the calibration of FlagSim.  This processing required watching 

the videos from both the stationary cameras as well as from the instrumented Honda Pilot.  

Pertinent information from these videos was recorded into Excel spreadsheets.  The data items that 

were obtained from these two video sources are discussed in the following sections. 

Before proceeding with the discussion, the following definitions are provided for several 

terms used throughout the remainder of this report: 

 Green time: “Green” time, which means “go time”, is the time during which, for a given 
travel direction, the flag person’s paddle/sign is displaying ‘slow’.  The total green time is 
calculated as the difference in time from when the flag person changes the paddle/sign 
from ‘stop’ to ‘slow’ and back to ‘stop’.  The definition of this term as used in this study 
is consistent with the definition of ‘displayed green time’ in signalized intersection 
analysis. 

 Red time: “Red” time, which means “stopped time”, is the time during which, for a given 
travel direction, the flag person’s paddle/sign is displaying ‘stop’.  The total red time is 
calculated as the difference in time from when the flag person changes the paddle/sign 
from ‘slow’ to ‘stop’ and back to ‘slow’.  The definition of this term as used in this study 
is consistent with the definition of ‘displayed red time’ in signalized intersection analysis. 

 Phase time: The phase time was calculated as the green time plus the time it takes the last 
vehicle to enter the work zone during the displayed green to exit the work zone.  More 
generally, this is referred to as green time plus work zone travel time.  There were some 
cases where the flag person allowed one or more vehicles to enter the work zone after 
he/she turned the paddle/sign to ‘stop’.  In these cases, the time that the flag person 
changed the flag to ‘stop’ was changed to the time that the last vehicle entered the work 
zone.  However, this was not done in cases where the vehicle(s) that entered after the 
paddle/sign had been changed to ‘stop’ were associated with the construction activities 
(i.e., the vehicle did not exit the work zone during that phase). 

 Lost time: As used in this study, the definition of total lost time for a phase is consistent 
with the definition as used in signalized intersection analysis—that is, the time during 
which vehicles for a given approach/direction are not moving.  This lost time is typically 
separated into a ‘startup’ lost time component and a ‘clearance’ lost time component.  
The startup lost time is considered to be the difference between the time when the front 
bumper of the last vehicle to exit the work zone crosses the stop bar and the time when 
the front bumper of the first vehicle of the opposing direction enters the work zone.  The 
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clearance lost time is considered to be the travel time through the lane closure area of the 
last vehicle for the opposing direction to enter the work zone, for a given phase. 

 Cycle time: The cycle time (or length) is calculated as the difference in time from when 
the flag person for a given travel direction changes the paddle/sign from ‘stop’ to ‘slow’ 
to ‘stop’ and back to ‘slow’ again.  This is equivalent to the phase time for one travel 
direction plus the phase time for the opposing travel direction. 

 
Data from Stationary Camera Video 

Some of the parameters outlined in the data requirements section were obtained from the 

stationary camera videos.  An Excel spreadsheet was used to organize data for each travel direction 

for each day and site.  An example of the type of Excel spreadsheet created for the stationary 

camera video data is shown in Appendix A.  The data are organized for each phase observed from 

the video recordings.  For each phase, certain information was recorded in order to obtain data for 

the parameters outlined in the data requirements section.  This section discusses how such 

information was used to determine values for the parameters in the data requirements section.  A 

discussion on what type of flagging control was employed in the field is also discussed. 

Displayed paddle/sign indication change times 

The time at which a flag person for a given travel direction change the displayed indication 

(‘slow’ or ‘stop’) was recorded.  This allowed several of the above-defined time-related definitions 

to be calculated. 

Vehicle type and work zone travel time 

A record of each vehicle that entered the work zone was created.  Each record contained the 

vehicle’s work zone entry time and work zone exit time (for those vehicles that exited the work 

zone).  Using the work zone entry and exit times of the vehicle, the work zone travel time for the 

vehicle was obtained.  The vehicle was also classified as either a passenger car (PC), small truck 
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(ST), medium truck (MT), or large truck (LT).  Pictures showing how the truck categories were 

classified can be found in Appendix B. 

Average speed of vehicles in the work zone per phase 

The work zone travel times for all vehicles entering the work zone during a given phase were 

averaged.  This average work zone travel time was then used along with the length of the lane 

closure to determine the average speed of vehicles through the work zone for the phase. 

Number of vehicles entering the work zone per phase 

The time when each flag person switched their paddle/sign was recorded.  From this 

information and the work zone entry time for each vehicle, the number of vehicles entering the 

work zone for each phase could be determined.  It was also possible to determine how many 

vehicles of each different vehicle classification (e.g., passenger car, small truck) entered the work 

zone during each phase. 

Startup lost time 

The amount of startup lost time is a function of several factors.  The first delay occurs as the 

last vehicle exiting the work zone travels from the work zone exit point to a safe distance in order 

to allow the next direction of vehicles to proceed.  The exiting vehicle must maneuver the lane 

switch area and pass the first few vehicles queued.  Second, additional time is needed for the flag 

person to switch their paddle/sign, such as the time it takes the flag person to determine when the 

work zone is clear.  Finally, there is lost time for the first vehicle reacting to the change of the sign, 

similar to vehicles’ startup lost time at a signalized intersection. 

The startup lost time for each phase was calculated by taking the difference between the time 

the first vehicle in queue entered the work zone and the time the last vehicle traveling in the 

opposing direction exited the work zone.  If the last vehicle traveling in the opposing direction 

exited after the flag person changed the paddle/sign to ‘slow’, the startup lost time calculation was 
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modified.  In this case, the startup lost time was calculated by taking the difference between the 

time the first vehicle in queue entered the work zone and the time the flag person changed the 

paddle/sign to ‘slow’. 

The mean and standard deviation of the startup lost time was determined for each site.  These 

values are shown in Table 2.  From this table, it can be seen that the first two sites had larger means 

and standard deviations than the third site.  This is likely a result of the longer lane closures at 

these sites.  Since these sites were more rural in nature and had longer lane closures, the amount 

of time that some drivers were waiting to enter the work zone was in the order of 4 to 7 minutes.  

As a result, some drivers were not paying as much attention to the flag person and took a little 

more time to start up after the flag person changed the paddle/sign to ‘slow.’  This resulted in 

larger startup lost time values compared to those obtained from the third site, which had shorter 

lane closures and was less rural in nature. 

Table 2.  Startup Lost Time Values Determined for Each Site 

Site # 

Startup 
Lost Time 

Mean (s) Std. Dev. (s) 

1 14.73 10.56 

2 15.18 11.56 

3 10.00 4.75 

 
Queue length 

The queue length for each phase and direction was obtained by simply counting the number 

of vehicles in queue prior to the flag person changing the paddle/sign to ‘slow’. 

Saturation headway 

The saturation headway for each phase and direction was obtained by using the work zone 

entry times of the first eight vehicles in queue.  Specifically, this value was calculated by taking 
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the difference between the work zone entry times of the first and eighth vehicle in queue and 

dividing by the number of headways between the first and eighth vehicle. 

Type of flagging control employed 

After watching the videos from the stationary cameras, it seemed as though most flag 

persons were using a ‘distance gap out’ mechanism to judge when to switch the travel direction 

right-of-way.  The main input for this type of flagging control in FlagSim is the mean distance gap 

out value.  From watching the videos, it was difficult to determine the distance gaps that the flag 

persons were using to control their paddle/sign.  Therefore, the mean distance gap out value could 

not be determined with much accuracy.  The time gaps associated with the distance gaps that the 

flag persons used, however, could be easily determined from the videos.  While it is unrealistic for 

a flag person to directly employ a ‘time gap out’ method in the field, since the flag person would 

have to constantly look at a timing device, the use of a time gap out flagging control would allow 

for the best calibration of the FlagSim program.  Therefore, a time gap out flagging control was 

used in place of a distance gap out flagging control for calibration of the FlagSim program. 

In order to use this time gap out flagging control for the FlagSim calibration, it was necessary 

to determine the mean and standard deviation of the time gap out values used by the flag persons.  

The mean time gap out value was determined using a critical gap procedure.  Specifically, Raff’s 

critical gap method (1950) was used, which required the use of the gaps the flag persons accepted 

as well as rejected.  This is the same method used to identify critical gap acceptance values for the 

unsignalized intersection analysis procedure in the HCM. 

An accepted gap was calculated by taking the difference between the work zone entry times 

of two consecutive vehicles that entered the work zone during the same phase.  Each phase 

contained multiple accepted gaps if more than two vehicles entered the work zone during the phase.  

A rejected gap was calculated for a given phase by taking the difference between the time the first 
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vehicle arrived at the work zone after the flag person changed the paddle/sign to ‘slow’ and the 

time the last vehicle in the phase entered the work zone.  There was only one rejected gap per 

phase. 

Rather than estimating the time gap out values to the nearest second, it was determined that 

it would be more beneficial to estimate the time gap out values to the nearest 5 seconds.  This was 

because the actual values of the accepted and rejected gap values were only accurate within a 

couple of seconds, since the work zone entry times could only be obtained from the videos to the 

nearest second.  Therefore, the accepted and rejected gap values were placed into 5 second bins 

between 0 and 60 seconds.  Values greater than or equal to 60 seconds were placed into a separate 

bin, since a very small number of gaps greater than or equal to 60 seconds were accepted by the 

flag persons. 

After the accepted and rejected gaps were placed into these bins, the critical time gap out 

value was determined.  A graph was created to show the cumulative number of accepted gaps and 

rejected gaps for the different bins.  From this graph the critical time gap out value was determined 

by looking at the point where these cumulative curves intersected.  This value was used as the 

mean time gap out value in FlagSim.  Since the critical time gap out value was only accurate within 

5 seconds, it was decided that a standard deviation of 5 seconds was appropriate for the time gap 

out value. 

Critical time gap out values were determined for each site.  These values are shown in Table 

3.  From this table, it can be seen that the first two sites had a larger mean critical time gap out 

value as compared to the third site.  This is likely a result of the longer lane closures and smaller 

traffic demands at sites 1 and 2.  Because the lane closures were longer and not as many vehicles 

needed to enter the work zone, the flag persons would generally allow any late arriving vehicles 
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to enter the work zone, even if the vehicles were a good distance away from the work zone.  This 

in turn increased some of the accepted gap values, which resulted in a larger critical gap.  The 

graphs that were used to obtain the critical gap values for each site are shown in Figure 18, Figure 

19, and Figure 20.  The data used to create these plots can be found in Appendix A. 

 
Table 3.  Critical Time Gap Out Values Determined for Each Site 

Site # 

Critical Time 
Gap Out 

Mean (s) Std. Dev. (s) 

1 30 5 

2 30 5 

3 25 5 

 

 
Figure 18.  Critical gap for site 1 
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Figure 19.  Critical gap for site 2 
 

 
Figure 20.  Critical gap for site 3 
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Video from Instrumented Vehicle 

Video of trips made through the work zone in the instrumented Honda Pilot were used to 

ascertain information about different factors within the work zone that may have an impact on 

traffic operations in the work zone.  Specifically, it was desirable to determine what factors may 

have an impact on vehicles’ speeds through the work zone.  From watching the videos, it was 

observed that the following factors may have influenced vehicles’ speeds: 

 Effective lane width – the width of the pavement available for vehicles to drive on (includes 
paved shoulders) 

 Construction activity – level of construction activity taking place (e.g., milling and 
resurfacing, shoulder work, sodding) 

 Construction vehicle presence – number of stationary construction vehicles parked on the 
closed lane in close proximity to vehicles traveling on the open lane 

 Travel direction of closed lane – whether drivers will have to travel in the “opposing” lane 
through the work zone 

 Percentage of construction vehicles entering the work zone – the percent of construction 
vehicles that entered the work zone during a phase but did not exit 

 
Information about the first four factors above was determined from the instrumented Honda 

Pilot video.  Information about the last factor, percentage of construction vehicles entering the 

work zone, was determined from both the stationary camera video and instrumented Honda Pilot 

video.  An Excel spreadsheet was used to organize information about each of these factors for all 

recorded trips through the work zone.  A screenshot of this spreadsheet can be found in Appendix 

A.  The type of information obtained for each of these factors is discussed below in its respective 

section. 

Effective lane width 

Based on observations from the videos, it was hypothesized that as the lane width available 

to drivers in the work zone decreased, the average speed of vehicles in the work zone also 

decreased.  Therefore, this effective lane width was recorded for each trip made through the work 

zone by the instrumented Honda Pilot.  It was difficult to determine a precise numeric value for 
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the effective lane width from the videos, so this variable was categorized into three general levels 

(narrow, medium, and wide). 

Narrow lane widths were assigned for lanes that had no, or a very narrow, shoulder and 

cones placed inside the lane.  Figure 21 shows an example of a narrow effective lane width.  

Medium lane widths were assigned for lanes that had a small shoulder and cones placed outside 

the lane or on the centerline.  Medium lane widths were also assigned for lanes that had a relatively 

wide shoulder and cones placed inside the lane.  Figure 22 shows an example of a medium effective 

lane width.  Wide lane widths were classified for a lane with a relatively wide shoulder and cones 

placed outside the lane or on the centerline.  Wide lane widths were also assigned for lanes that 

had a narrow shoulder but cones placed outside the lane.  Figure 23 shows an example of a wide 

effective lane width. 

 
Figure 21.  Example of narrow effective lane width from site 1 
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Figure 22.  Example of medium effective lane width from site 2 
 

 
Figure 23.  Example of wide effective lane width from site 3 
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Construction activity 

The construction activity in the work zone also appeared to have an effect on vehicles’ 

speeds in the work zone.  Therefore, the construction activity was recorded for each trip through 

the work zone.  Since a numeric value was not able to be put on the construction activity, three 

different categorical levels were used for this variable (low, medium, and high).  Low construction 

activity was considered for activities such as sodding, shoulder work, or any other activity that 

required few construction vehicles or equipment to operate close to the open travel lane.  Medium 

construction activity was considered for activities such as milling or resurfacing or any other 

activity that required several construction vehicles or pieces of equipment to operate close to the 

open travel lane.  High construction activity considered for activities such as both milling and 

resurfacing taking place at the same time or any other activity that required a large number of 

construction vehicles or equipment to operate close to the open travel lane. 

Construction vehicle presence 

The number of stationary construction vehicles that were in proximity to the open travel lane 

was also thought to have some effect on vehicles’ speeds in the work zone.  Since some 

construction vehicles (e.g., dump trucks, rolling equipment) would sit on the closed travel lane in 

close proximity to the open travel lane, it was thought that drivers may tend to slow down when 

driving past these vehicles.  This could lead to lower average speeds in the work zone.  The 

presence of construction vehicles was recorded for each trip made with the instrumented Honda 

Pilot.  Developing a precise numeric value for this factor was not practical; thus, three different 

categorical levels were used (low, medium, and high).  Low construction vehicle presence was 

defined as having very few construction vehicles in the work zone, and if there were vehicles, they 

were not close to the open travel lane.  Medium construction vehicle presence was defined as 

having a few construction vehicles in the work zone.  These were mainly pickup trucks or other 
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smaller pieces of construction equipment, but there could be a few larger construction vehicles 

(e.g., dump trucks).  A few of these construction vehicles would be close to the open travel lane, 

but the majority would not.  High construction vehicle presence was defined as having a large 

number of construction vehicles in the work zone.  These vehicles would consist of larger 

construction vehicles (e.g., dump trucks, semi-tractor trailers), and many of these vehicles would 

be in close proximity to the open travel lane. 

Travel direction of closed lane 

If a driver is traveling on the lane that is closed, he/she will have to temporarily switch lanes 

and travel on the opposing lane when proceeding through the work zone.  Since drivers are not 

accustomed to driving in the opposite lane, they may be more cautious when proceeding through 

the work zone.  As a result, the average speed of vehicles in the work zone may be slightly lower 

for the travel direction with the closed lane as opposed to the direction with the open lane.  The 

travel direction of the closed lane was recorded for each of the trips through the work zone in the 

Honda Pilot. 

Percentage of construction vehicles entering the work zone 

When watching some of the videos, vehicles associated with the construction activities (e.g., 

dump trucks) were seen departing from the open travel lane and moving onto the closed travel lane 

to help with the construction activities.  Before these vehicles moved off the open travel lane and 

onto the closed travel lane, they usually decelerated, sometimes causing the vehicles traveling 

behind them to slow down.  As a result, the travel times of these vehicles may have been extended 

due to this impedance by the construction vehicles.  Information about how many of these 

construction vehicles entered the work zone was not able to be accurately determined from the 

instrumented Honda Pilot videos.  Fortunately, this information could be obtained from the 

stationary camera video.  Therefore, the construction vehicles which entered the work zone but 
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did not exit were identified for each phase.  These vehicles were temporarily assigned a 

classification of CV, for construction vehicle, within the spreadsheet data logs.  The percentage of 

construction vehicles that entered the work zone was then determined for each of the trips the 

Honda Pilot made through the work zone.  It should be noted that most of the construction vehicles 

that entered the work zone and did not exit were dump trucks. 

Models from Field Data 

Two models were estimated from the field data—one for average travel speed through the work 

zone and one for the average saturation headway of vehicles discharging from a queue into the 

work zone. 

Work Zone Speed Model 

With the impact to the overall cycle length due to the lost time caused by traversing the work 

zone, the estimation of the work zone travel speed must be as accurate as possible.  A regression 

analysis was performed on all of the data recorded from the Honda Pilot trips through the work 

zone (92 trips).  The resulting model formulation is shown in Eq. 8. 
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where 

WorkZoneSpdi = average travel speed of vehicles through the work zone for phase i (mi/h) 
%HVi = percentage of heavy vehicles in the traffic stream for phase i 
LW_Narrow = 1 if the effective lane width is narrow, 0 otherwise 
LW_Medium = 1 if the effective lane width is medium, 0 otherwise 
PostedSpd = the posted speed limit through the work zone (mi/h) 
TravelDirClosedLane = 1 if vehicles are traveling in the direction of the closed lane (i.e., 

they perform a lane shift when entering and exiting work zone), 0 otherwise 
NumVehi = the number of vehicles entering the work zone for phase i 
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ConstAct_MedHigh = 1 if the level of construction activity in the work zone is medium or 
high, 0 otherwise 

 
The signs of the variables are all as expected.  When interpreting coefficient signs, keep in mind 

that some variables appear more than once in the equation (e.g., %HV and lane widths), and that 

some terms are interactions (e.g., the last two terms).  All of the non-intercept terms were 

significant at the 95% or better confidence level, except for the NumVeh term, which was 

significant at the 90% confidence level and the ConstAct_MedHigh term, which was significant at 

the 85% confidence level.  The adjusted R2 value of the model is 0.684.  Given all of the variability 

in the field data, this moderate level of model fit was expected. 

Saturation Headway Model 

One of the key parameters to all of the calculations in the analysis procedure is saturation 

headway.  This measure refers to the time headway between vehicles when departing from a 

standing queue when the traffic signal (or flag person’s paddle/sign in this case) turns green.  A 

regression analysis was performed on all of the phase data recorded from the field for phases that 

had at least 8 vehicles in queue at the start of the phase (358 phases).  The resulting model 

formulation is shown in Eq. 9. 

 
 iiiisat LTMTSTh %0487.0%0417.0%0127.09817.2_   [9] 

where 

isath _ = average saturation headway for phase i (s/veh) 

%STi = percentage of small trucks in the traffic stream for phase i 
%MTi = percentage of medium trucks in the traffic stream for phase i 
%LTi = percentage of large trucks in the traffic stream for phase i 
 

The signs of the variables are all as expected, and all of the terms were significant at the 95% or 

better confidence level.  The adjusted R2 value of the model is 0.627.  Again, given all of the 

variability in the field data, this moderate level of model fit was expected. 
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CHAPTER 4 
SIMULATION ANALYSIS AND RESULTS 

 

This chapter describes the simulation aspect of this project.  Because a wide range of input 

conditions were not obtained from the field sites described in the previous chapter, it was necessary 

to use simulation to be able to analyze the performance of two-lane roadways with a lane closure 

across a wide range of conditions (e.g., length of lane closure, traffic demand, work zone posted 

speed, etc.).  The main purpose of the field data was to identify the appropriate values for the 

various settings that affect the behavior of the vehicles and flagging operations in the simulation 

program. 

Two-lane work zones are unique in their operation.  In order to model the operations 

reasonably accurately, a simulation program must have the following capabilities at a minimum: 

 model the flagging control method used in the field 

 model vehicle arrivals at the work zone 

 model vehicles discharging from the stop line 

 model heavy vehicles, in addition to passenger cars 

 model vehicles traveling through the work zone  

 record various simulation results in order to allow for the following performance 
measures to be calculated, such as 

o queue delay 

o travel time delay due to reduced speeds 

o queue length 

o capacity 

 

Most, if not all, existing commercially available simulation packages do not explicitly 

provide for modeling work zones on two-lane roadways, nor are they easily configured for such 



 

 43 

modeling, particularly because of the unique aspects of flagging control.  The FlagSim simulation 

program was used for the simulation aspects of this project.  This program was also used for the 

predecessor project to this one; however, it has undergone a number of enhancements since that 

time.  A detailed overview of the program is provided in the Users Guide, which is included in 

Appendix C of this report. 

Calibration 

The calibration effort consisted of initially setting the various driver and vehicle parameters 

in FlagSim to values consistent with observations from the field data and/or other data sources.  A 

large number of simulation runs, with a range of input conditions consistent with the range of input 

conditions observed in the field, were then made.  The simulation results for average work zone 

travel speed and average saturation headway were then compared to the field values.  This process 

was repeated many times, with small revisions made to one or more of the driver parameters each 

time.  The driver parameter values that resulted in the best fit of the simulation data to the field 

data were retained for further use in the FlagSim simulation runs.  The vehicle parameters were 

not varied from their initial settings.  The vehicle and driver parameters are accessed through the 

‘Advanced Vehicle/Driver Parameters’ screen in FlagSim (see Users Guide in Appendix C).  

These parameters and their settings are described in the remainder of this section. 

Vehicle Parameters 

Vehicle Dimensions (length, width, height) 

The three truck classifications discussed in the previous chapter were generally matched to 

the standard FHWA classifications as follows: 

 Small Truck—Class 5 and 6 
 Medium Truck—Class 8 
 Large Truck—Class 9, 11, and 12 
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The dimensions of the three truck types were set accordingly.  The passenger car dimensions were 

based on common sedan-type vehicle—specifically a Honda Civic.  The selected dimensions are 

shown in Table 4. 

Maximum Acceleration 

Maximum acceleration is not an input to FlagSim.  FlagSim now uses a full vehicle dynamics 

modeling approach to determine the maximum acceleration of a vehicle.  This model takes into 

account the vehicle’s physical (such as frontal area, drag coefficient, and weight) and drivetrain 

(such as engine output and transmission gearing) characteristics to determine the tractive effort 

available to accelerate the vehicle at every time step during the simulation.  This approach also 

allows roadway grade to be accounted for, as this affects the grade resistance in the acceleration 

calculations.  This approach for modeling maximum acceleration is described in more detail in the 

FlagSim Users Guide (see Appendix C). 

Vehicle Weight 

For another FDOT research project (BDK77-977-15), weigh-in-motion (WIM) data were 

obtained for numerous locations across the state for a recent 3.5 year period.  Of the 24 WIM data 

collection locations, three of these stations were located on two-lane highways.  The data from 

these three sites were used to establish weight values for the three truck types.  The passenger car 

weight was based on the vehicle manufacturer’s data specification sheet.  The selected weights are 

shown in Table 4. 

Drag Coefficient 

The drag coefficient values were set according to guidance in Mannering and Washburn 

(2012) (see Chapter 2). 
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Maximum Torque and Power 

The maximum engine torque and power were set according to the values established through 

FDOT Project BDK77-977-15.  These values are shown in Table 5. 

Transmission Gear Ratios 

The transmission gear ratios were set according to the values established through FDOT 

Project BDK77-977-15.  The reader is referred to that project report for the specific values. 

Maximum Deceleration 

Typically achievable maximum deceleration rates as shown in Table 5 were used.  However, 

since these deceleration rates usually only occur in emergency braking situations, they rarely are 

utilized in a FlagSim simulation. 

 
Table 4.  Vehicle Type Physical Characteristics 
Vehicle Type Length (ft) Width (ft) Height (ft) Weight (lb) Drag Coeff. 
Passenger car 14.6 5.7 4.5 3060 0.33
Small truck 30 7 10 17000 0.55
Medium truck 45 8 10 36000 0.66
Large truck 68.5 9 10 53000 0.66

 
Table 5.  Vehicle Type Drivetrain Characteristics 
Vehicle Type Max Torque (ft-lb) Max Power (hp) Max Decel (ft/s2) 
Passenger car 139 197 -19
Small truck 660 300 -15
Medium truck 1650 485 -15
Large truck 1650 485 -15

 
 
Driver Parameters 

Desired Acceleration 

The desired acceleration rates were set as 3.8 ft/s2, 2.5 ft/s2, 2.0 ft/s2, and 2.0 ft/s2 for 

passenger cars, small trucks, medium trucks, and large trucks, respectively.  These values were 

consistent with in-vehicle GPS data from other studies and observations from the field videos. 
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Desired Deceleration 

Values of 10 and 11 ft/s2 have been identified as appropriate for non-emergency braking 

situations (Mannering and Washburn, 2012).  A value of 11 ft/s2 was used for passenger cars.  

Since truck drivers are usually a little less tolerant of having to decelerate, slightly lower values 

were used—9 ft/s2, 8 ft/s2, and 7 ft/s2 for small, medium, and large trucks, respectively. 

Desired Speed % 

The base desired speed value is a function of factors such as posted speed limit, construction 

activity, effective lane width, and direction of closed lane.  This desired speed % input specifies 

the percentage difference from the base desired speed value that a driver will desire to travel when 

not constrained by other vehicles.  To identify these values, the average speeds through work zone 

of the different vehicles types were calculated.  Values were calculated for all vehicles traveling 

through the work zone, just the vehicles not considered to be in a following mode (using a headway 

threshold of 6 seconds), and just the lead vehicle of each platoon of vehicles traveling through the 

work zone.  After examination of all the values, it was felt that the values based on just the lead 

vehicles of platoons were the most reliable.  From these measurements, values of 7.5%, 0%, -3%, 

and -5% were set for passenger cars, small trucks, medium trucks, and large trucks, respectively.  

In other words, passenger car drivers will travel 7.5% above the base desired speed value, on 

average, while large truck drivers will travel 5% below the base desired speed value, on average. 

Desired Headway 

The desired following headway values were set as 1.5 s, 2.25 s, 2.75 s, and 3.0 s for passenger 

cars, small trucks, medium trucks, and large trucks, respectively. 

Stop Gap 

This input specifies the distance between the rear bumper of a lead vehicle and the front 

bumper of a trail vehicle, while at a stop (i.e., in a queue waiting to enter the work zone).  The stop 
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gap values were set as 12 ft, 16 ft, 20 ft, and 22 ft for passenger cars, small trucks, medium trucks, 

and large trucks, respectively. 

 
Other Input Values 

Other inputs necessary to run the simulations for the calibration, as well as all subsequent 

simulations are as follows. 

 
Flag Control Settings 

 Flagging method:  As discussed in Chapter 3, the ‘time gap out’ flagging method was 
employed in FlagSim.  Based on the field results of gap out times, it was decided to use a 
mean gap out time of 30 seconds (with a standard deviation of 5 seconds) for ‘rural’ 
conditions, which were considered to be sites with lane closures of one mile or greater 
and posted speed limits greater than 40 mi/h, and a mean gap out time of 25 seconds 
(with a standard deviation of 5 seconds) for all other conditions. 

 Startup lost time:  As for the gap out times, two different sets of times were used for rural 
and non-rural conditions.  For rural conditions, a mean startup lost time of 15 seconds 
(with a standard deviation of 10 seconds) was used, and for all other conditions a mean 
startup lost time of 10 seconds (with a standard deviation of 5 seconds) was used. 

 Minimum green time:  This value was set to 5 seconds.  This variable is essentially a non-
factor when the time gap out flagging method is used. 

 Maximum green time:  This value was set to 300 seconds.  Most field phases were 
considerably shorter than this, but a few phases reached as high as 290 seconds. 

Vehicle Distribution 

While a variety of total truck percentages were run as part of the overall set of simulation 

runs, the relative percentages of small, medium, and large trucks were varied only at two levels.  

Based on the field data, the small, medium, and large truck percentage splits used were 20, 35, and 

45, respectively, for rural conditions.  For non-rural conditions, the small, medium, and large truck 

percentage splits used were 45, 20, and 35, respectively. 
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Approach Roadway Length 

The approach roadway length was set to 1.5 miles, which was sufficient to accommodate the 

queuing for nearly all simulation scenarios.  Any simulation runs that resulted in a queue length 

equal to the approach roadway length (FlagSim will only report queue lengths up to the length of 

the approach roadway length) were removed from the data set. 

Approach Roadway Posted Speed 

The approach roadway posted speed was set to the same value as the work zone posted 

speed. 

Work Zone Travel Delay Threshold Speed 

The work zone travel delay threshold speed is set to the work zone posted speed.  Vehicles 

traveling less than this speed in the work zone accumulate travel delay. 

Queue Delay Threshold Speed 

The queue delay threshold speed is set to 10 mi/h.  Vehicles traveling less than this speed on 

the approach roadway accumulate queue delay. 

Simulation Duration 

A 5-minute warm-up period and a 60-minute simulation period were used for each 

simulation run. 

Results 

The calibration results between FlagSim and the field data for average work zone travel 

speed were based on a total of 1012 individual phases that covered a wide range of inputs.  A linear 

regression analysis of the two sets of values produced an adjusted R2 value of 0.732. 

The calibration results between FlagSim and the field data for average saturation headway 

were based on a total of 845 individual phases that covered a wide range of inputs.  A linear 

regression analysis of the two sets of values produced an adjusted R2 value of 0.852. 
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Again, any driver parameter values different from the values given above resulted in lower 

R-squared values.  Overall, this level of calibration between the field data and FlagSim is quite 

reasonable given the considerable variability in the field conditions. 

Simulation-Based Models 

With the appropriate values set for the various driver parameters and other input variables through 

the calibration effort, the final models to be used in the analysis procedure were then developed.  

These models consisted of work zone travel speed, saturation headway, queue delay, and queue 

length. 

Work Zone Speed Model 

The work zone speed model was based on results for over 17,000 one-hour simulation runs 

that covered a wide range of inputs.  A regression analysis of all the simulation results yielded the 

model formulation shown in Eq. 10. 
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where 

WorkZoneSpdi = average travel speed of vehicles through the work zone for direction i (mi/h) 
%HVi = percentage of heavy vehicles in the traffic stream for direction i 
LW_Narrow = 1 if the effective lane width is narrow, 0 otherwise 
LW_Medium = 1 if the effective lane width is medium, 0 otherwise 
LW_NarrowMedium = 1 if the effective lane width is narrow or medium, 0 otherwise 
ConstAct_MedHigh = 1 if the level of construction activity in the work zone is medium or 

high, 0 otherwise 
TravelDirClosedLane = 1 if vehicles are traveling in the direction of the closed lane  

(i.e., they perform a lane shift when entering and exiting work zone), 0 otherwise 
WZLen = length of the work zone (ft) 
GradePropi = grade proportion (i.e., %grade/100) in direction i (downhill grades should be 

entered as zero) 
PostedSpd = the posted speed limit through the work zone (mi/h) 
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This model is generally consistent with the field data based model, with a few small 

differences.  The field model included a term for the number of vehicles entering the work zone 

during a phase, although this variable was only marginally significant.  Given the controlled entry 

of vehicles into the work zone, the traffic volume level by itself has much less effect on average 

travel speed like it does under less controlled traffic flow environments.  Furthermore, significant 

reductions in average travel speed are usually not observed for low to moderate flow rates (of 

passenger cars only), which is usually the norm for work zone situations.  The number of trucks in 

the traffic stream has a much more significant effect on the work zone average travel speed than 

the overall traffic demand level.  While the number of trucks can be implemented through an 

interaction term of demand and percent heavy vehicles, the use of the percent heavy vehicles 

variable individually provides nearly as good of a model fit as the interaction term, and since this 

model is applied at the simulation period level as opposed to the phase level, the application of 

this model using just an overall average of heavy vehicle percentage is more straightforward. 

The simulation model includes a term for the combination of grade proportion and length of 

grade.  This term is statistically significant in the model, but it has a very small impact on the 

overall average speed.  While steep and/or long grades can have a large effect on truck speeds, 

average speeds through the work zone are typically only in the 30-40 mi/h range, even for a 

passenger car only stream.  Trucks are usually able to maintain speeds in this range even on 

moderately steep and/or long grades.  Length of grade multiplied by grade proportion is limited to 

a maximum value of 300, which corresponds approximately to the point at which trucks will reach 

their crawl speed.  The effect of grade was not observed from the field data because all of the study 

sites had level or very nearly level terrain. 
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The other difference from the field model is that the narrow and medium effective lane width 

variables have been combined into one term.  All of the model terms are significant at the 99% or 

better confidence level.  The adjusted R2 value of the model is 0.960. 

Saturation Headway Model 

The saturation headway model was based on over 109,000 individual phases that covered a 

wide range of inputs.  A regression analysis of all the simulation results yielded the model 

formulation shown in Eq. 11. 
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where 

isath _ = average saturation headway for direction i (s/veh) 

%STi = percentage of small trucks in the traffic stream for direction i 
%MTi = percentage of medium trucks in the traffic stream for direction i 
%LTi = percentage of large trucks in the traffic stream for direction i 
GradePropi = grade proportion (i.e., %grade/100) in direction i (downhill grades should be 

entered as zero) 
AvgWZspeed = average work zone travel speed for direction i, as calculated from Eq. 10 or 

using field-measured speeds (mi/h) 
 

This model is generally consistent with the field data based model, with the difference that 

two additional terms are included, one for the GradeProp variable and one for the AvgWZspeed 

variable.  Since the grades at the field sites were generally level, it was not possible to include this 

variable in the field model.  Since FlagSim can now account for the effect of grade on vehicle 

acceleration, grade was included as a variable in the experimental design, and as expected its effect 

was found to be statistically significant.  Also, given that the field sites had a narrow range of 

posted speeds (50-60 mi/h), it was not surprising that average work zone travel speed was not 

found to be significant in the field data based model.  With the wider range of work zone posted 
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speeds run in the experimental design for the simulation based models, average work zone travel 

speed was found to be significant.  The coefficient sign is also as expected—higher speeds through 

the work zone will reduce the saturation headway.  All of the model terms are significant at the 

99% or better confidence level.  The adjusted R2 value of the model is 0.792. 

Total Queue Delay and Maximum Queue Length Models 

The queue delay and queue length models were based on a very large set of simulation 

scenarios.  The variables and ranges of input values used to develop the set of simulation input 

scenarios are identified in Table 6. 

 
Table 6.  Experimental Design for Simulation-Based Models 
Variable Range of Input Values 
Length (mi) 0.25-2
Posted Speed (mi/h) 35-55
Grade (%) 0-6
Total Volume (veh/h) 200-1000
D Factor 0.5-0.7
HV % 0-20
Effective Lane Width Narrow, Medium, Wide
Construction Activity Low, Medium, High
Lane Closure Direction Direction 1, Direction 2

 
Six replications were run for each input scenario.  After removing simulation runs that 

resulted in over-capacity conditions, a total of 7541 simulation runs were used for the development 

of the queuing models.  For the development of queue delay and queue length models in this 

project, scenarios that yielded volume-to-capacity ratios of 1.2 or greater were removed from the 

analysis data set.  Generally, for over-capacity conditions, simple deterministic queuing equations 

can be applied to estimate queue delay and queue length. 

A regression analysis of all the simulation results yielded the total queue delay model 

formulation shown in Eq. 12. 
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where 

TotalQDelayi = total queue delay for a 1-hr time period for direction i (veh-hr) 
(gi /C) = average effective green time to cycle length ratio for direction i  

(expressed as a percentage) 
(v/s)i = volume to saturation flow rate ratio for direction i (expressed as a percentage) 
C = average cycle length (sec) 
HVi = percentage of heavy vehicles in the traffic stream for direction i 

ig = average green time for direction i 

 

All of the model terms are significant at the 99% or better confidence level.  The adjusted R2 value 

of the model is 0.790.  A regression analysis of all the simulation results yielded the maximum 

queue length model formulation shown in Eq. 13. 
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where 

MaxQLengthi = average maximum queue length per cycle for direction i (veh/cycle) 
Other terms are as defined previously 

 

All of the model terms are significant at the 99% or better confidence level.  The adjusted R2 value 

of the model is 0.738.  These two models have the same formulation, but with differing coefficient 

values, as expected.  It should be noted that the use of queue delay in this study represents an 

intermediate measure of delay.  The value of queue delay will fall between the measure of stop 

delay (where delay is only accumulated when vehicle velocity equals zero) and the measure of 

control delay (where delay is accumulated for a vehicle any time its velocity is less than what the 

average running speed would be without the control). 
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CHAPTER 5 
ANALYSIS PROCEDURE OVERVIEW 

 
This chapter provides a step-by-step overview of the analysis procedure that is implemented into 

the spreadsheet tool. 

Step 1:  Enter input values 
 
The analyst needs to enter values for the following inputs: 
 

 Traffic demand for each direction 
 Percentage of small trucks, medium trucks, and large trucks for each direction 
 Roadway grade for each direction 
 Length of work zone 
 Field measured or estimated work zone travel speed 
 If work zone travel speed is field measured 

o Work zone travel speed by direction 
 If work zone travel speed is estimated 

o Work zone posted speed 
o Effective lane width 
o Level of construction activity 
o Travel direction with lane closure 

 Startup lost time (or can use default value) 
 Green time (or can use calculated minimum value) 

 
Step 2:  Calculate the work zone average travel speed 
 

This step is skipped if the analyst enters field-measured average work zone travel speeds. 

 

PostedSpdGradePropWZLen

losedLaneTravelDirCMedHighConstAct

umNarrowMediLWHVMediumLW

NarrowLWHVdWorkZoneSp

i

i

ii







7492.0)300 ),(Min(0004.0

6907.0_1289.2

_%0577.0_3768.7

_5697.11%1246.07481.2

 [14] 

 
where 

WorkZoneSpdi = average travel speed of vehicles through the work zone for direction i (mi/h) 
%HVi = percentage of heavy vehicles in the traffic stream for direction i 
LW_Narrow = 1 if the effective lane width is narrow, 0 otherwise 
LW_Medium = 1 if the effective lane width is medium, 0 otherwise 
LW_NarrowMedium = 1 if the effective lane width is narrow or medium, 0 otherwise 
ConstAct_MedHigh = 1 if the level of construction activity in the work zone is medium or 

high, 0 otherwise 
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TravelDirClosedLane = 1 if vehicles are traveling in the direction of the closed lane  
(i.e., they perform a lane shift when entering and exiting work zone), 0 otherwise 

WZLen = length of the work zone (ft) 
GradePropi = grade proportion (i.e., %grade/100) in direction i (downhill grades should be 

entered as zero) 
PostedSpd = the posted speed limit through the work zone (mi/h) 

 
Step 3: Calculate average saturation headway 
 

 
AvgWZspeedGradeProp

LTMTSTh iiiisat





0095.02812.0

%0379.0%0276.0%0180.00875.3_  [15] 

where 

isath _ = average saturation headway for direction i (s/veh) 

%STi = percentage of small trucks in the traffic stream for direction i 
%MTi = percentage of medium trucks in the traffic stream for direction i 
%LTi = percentage of large trucks in the traffic stream for direction i 
GradePropi = grade proportion (i.e., %grade/100) in direction i (downhill grades should be 

entered as zero) 
AvgWZspeed = average work zone travel speed for direction i, as calculated from Eq. 10 or 

using field-measured speeds (mi/h) 
 
Step 4: Calculate saturation flow rate 
 

 
(s/veh) 

(s/h) 3600
(veh/h) 

_ isat
i h

s   [16] 

 
Step 5: Calculate cycle length 
 

 ii
i

i SLTg
speed

wzlen
PT   [17] 

where 

PTi = phase time direction i (s) 
wzlen = length of the work zone (ft) 
speedi = average work zone travel speed, as calculated from Eq. 14 or using field-measured 

speed, for direction i (ft/s) 
gi = green time for direction i (s) 
SLT = startup lost time—elapsed time between last vehicle to exit work zone and time when 

flag person turns paddle/sign to “Slow” for other direction 
 
 21 PTPTC   [18] 
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where 

C = cycle length (sec) 
 
Initially, the green time used in Eq. 17 will use a maximum green time (determine by the analyst) 

in order to determine whether the work zone will operate below are above capacity, as discussed 

in the next step.  If it is determined the work zone will operate under capacity, then the calculation 

for phase time will use either the analyst-entered green time or a calculated minimum green time, 

as determined from Eqs. 20 and 21. 

It should be noted that to be entirely accurate, the value for the speedi variable used to 

calculate the phase time for direction i should be the speed of the last vehicle to enter the work 

zone in direction i.  The use of the average work zone travel speed from Eq. 14 will create some 

error, but this error is minimal. 

 
Step 6: Calculate capacity 
 

Capacity can be calculated with the standard equation used for signalized intersection 

analysis (TRB, 2010), as shown in Eq. 19. 

 C
gsc i

ii   [19] 

where 

ci = capacity of the work zone in direction i (veh/h)  
si = saturation flow rate for direction i (veh/h) 
(g i /C) = effective green time to cycle length ratio for direction i 
 

 
To determine if the work zone will operate under capacity (i.e., conditions do not result in 

continually building queue lengths) for the given configuration, it is suggested to calculate Eq. 17 

using the maximum green time (default is 300 seconds).  The resulting capacity from Eq. 19 can 

then be compared to the input volume (by direction) to determine if none, either, or both directions 
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are under or over capacity.  If one or both directions are over capacity, an alternative work zone 

configuration should be considered; otherwise, delays and queue lengths will quickly become 

intolerable to motorists.  Generally, for over-capacity conditions, simple deterministic queuing 

equations can be applied to estimate queue delays and queue lengths. 

If the work zone is under capacity, the standard formula for calculating the minimum cycle 

length can be applied (TRB, 2010), shown in Eq. 20. 

  

21

























s

v

s

v
X

XL
 = C

c

c
min  [20] 

where 

Cmin = minimum necessary cycle length (sec) 
L = total lost time for cycle (sec) 
Xc = critical v/c ratio for the work zone 
(v/s)i = flow ratio for direction i 

 
Note again that the total lost time includes the startup and clearance lost times.  Here it assumed 

the critical v/c ratio, Xc, is 1.0.  Eq. 21 (TRB, 2010) can be applied to proportion the green times 

to the two directions of travel. 

 















ii
i X

C

s

v
g  [21] 

where 

gi = effective green time for phase (direction) i 
(v/s)i = flow ratio for direction i 
C = cycle length in seconds 
Xi = v/c ratio for direction i (again, assumed to be 1.0) 

 
It should be noted that the use of minimum cycle length, and corresponding green times, calculated 

from equations 20 and 21 do not necessarily lead to minimum delay values.  These values just 

ensure that all the vehicles queued during the red period for a direction are served during the 
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subsequent green period.  It was beyond the scope of this project to develop optimal timing 

strategies, that is, timing guidelines that would minimize the value of specific performance 

measures, such as vehicle delay.  Thus, for an under-capacity situation, the calculation procedure 

implemented in the spreadsheet tool uses equations 20 and 21 to determine the minimum cycle 

length and minimum green times to apply for the queue delay and queue length estimation models. 

 
Step 7: Calculate total queue delay 
 

 
   

iii

iii

gHVg

CsvCgyTotalQDela




00064.009670.0

00591.0(%)/42799.0(%)/56844.0
 [22] 

where 

TotalQDelayi = total queue delay for a 1-hr time period for direction i (veh-hr) 
(gi /C) = effective green time to cycle length ratio for direction i  

(expressed as a percentage) 
(v/s)i = volume to saturation flow rate ratio for direction i (expressed as a percentage) 
C = cycle length (sec) 
HVi = percentage of heavy vehicles in the traffic stream for direction i 

ig = green time for direction i 

 
Step 8: Calculate maximum queue length 
 

   
iii

iii

gHVg

CsvCgMaxQLength




00138.035359.0

01432.0(%)/65045.0(%)/49485.1
 [23] 

where 

MaxQLengthi = average maximum queue length per cycle for direction i (veh/cycle) 
Other terms are as defined previously 
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CHAPTER 6 
RTF TASK 

 
Introduction 

The FDOT Plans Preparation Manual contains a chapter (Chapter 10) titled "Work Zone Traffic 

Control" that discusses a lane closure analysis procedure to calculate the restricted capacity for 

roadway segments with lane closures. The calculated capacity is compared with the estimated 

hourly traffic demand to determine the time of day/night that the lane(s) can be closed. The 

procedure employs a remaining traffic factor (RTF), which denotes the percentage of travelers 

choosing not to divert, to estimate the hourly traffic demand through the work zone. The estimation 

of RTF plays a critical role in the lane closure analysis. However, no guidance has been provided 

on obtaining the value of the RTF in the current manual.  

Phase 1 of the project titled “Impact of Lane Closures on Roadway Capacity, Part C: 

Modeling Diversion Propensity at Work Zones” investigates drivers’ diversion behaviors at work 

zones and estimates the RTF within the framework of discrete choice modeling. A binary Logit 

model was calibrated based on the route choice data obtained through a stated preference (SP) 

survey, considering 11 potential attributes that may contribute to drivers’ diversion decisions. The 

model calibration procedure identifies three major factors influencing the diversion behavior, 

namely travel time, work zone location, and weather condition.  No statistical evidence was found 

to support the hypothesis that the remaining eight factors are important to drivers’ diversion 

decision at work zones. Table 7 summarizes the coefficient specification of the final calibrated 

model obtained from the Phase 1 study. 
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Table 7.  Final RTF Model Specification 

Explanatory Variables 
Original 
Route 

Alternative 
Route 

 Param. t stat Param. t stat 
Constant -0.5013 -2.0800 -- -- 

Travel time -0.1416 -10.1580 -0.1416 -10.1580 
Location 0.7220 2.8440 -- -- 

Weather conditions 0.3959 1.5840 -- -- 
Number of cases 436 
Log likelihood at 

convergence 
-201.3115 

LL for no-coefficient 
model 

-302.2122 

Rho2 0.3339 
Adjusted Rho2 0.3277 

 
 
The negative sign associated with the travel time coefficient indicates that travelers prefer routes 

with shorter travel time, given other factors being equal. The positive sign associated with the 

location coefficient implies that travelers tend to stay on the original route in rural areas. This 

behavior can be explained by the fact that fewer alternative routes are generally available in rural 

areas than in urban ones. Furthermore, it could be more difficult for travelers to obtain updated 

travel information in rural areas. The sign of the weather coefficient is also positive, and it can be 

interpreted that travelers are more likely to divert when encountering bad weather. Intuitively, 

travel time reliability in work zone decreases in bad weather conditions and safety becomes one 

of the prominent concerns. 

The Phase 1 study also proposes two estimation procedures to apply the calibrated binary 

Logit model to estimate the RTF, namely open- and closed-loop procedures. The former directly 

applies the model without considering the feedback of remaining and diverted flows on travel 

times while the latter applies the notion of traffic equilibrium and attempts to maintain the 

consistency between travel times and flows on different routes. As traffic equilibrium may not be 



 

 62 

achieved in a short time, the open-loop procedure may be more appropriate for short-term work 

zones while the closed-loop procedure may be closer to actual diversion rates at long-term work 

zones. Therefore, the calibrated model from Phase 1 not only provides us more insights on the 

diversion behavior in work zone but also serves as the basis for developing analytic tools for work 

zone analysis.  

That being said, the model calibration in Phase 1 was solely based on the SP survey data. It 

is widely known that respondents in SP surveys tend to over-predict their own responses. As a 

result, the calibrated model may overestimate the diversion rate and subsequently underestimate 

the RTF. One indication of that is the sign of the constant associated with the original route is 

negative (-0.5013) in Table 7. This implies that even when the travel times are equal, drivers are 

still inclined to divert, which may not be necessarily consistent with actual behaviors observed at 

work zones. Indeed, Hensher et al. (2005) pointed out that SP data often provide good estimates 

about the preference trade-offs that decision makers make but will not, unless by chance, reflect 

the true aggregate shares observed in the real world. 

Methodology 

The objective of this study is to further refine the choice model obtained in Phase 1 using field 

observed traffic data. One commonly adopted approach in the literature is to combine the actual 

choices made by individual travelers (i.e., revealed preference (RP) data) and SP survey data to 

address the validity issue of SP data and improve the accuracy of parameter estimates, see, e.g., 

Ben-Akiva et al. (1994) and Hensher et al. (2005). However, the integration of RP and SP data is 

only made possible when both data sources are available. Considering the time and budget 

limitations faced by this study, there are not enough resources to conduct another survey to collect 

RP data of individual travelers. Therefore, the data collection task in Phase 2 only records 

aggregate choice data instead of disaggregate route choices made by travelers. 
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To fully explore the limited data collected, the model refinement task in this phase focuses 

on calibrating the alternative-specific constants of the choice model estimated in Phase 1. By 

calibrating the constant term of the discrete choice model using the aggregate choice data collected 

in this phase, the inflated diversion rate can be adjusted to reproduce the actual diversion rate 

observed in the field. Meanwhile, the preference structure of the estimated choice model is also 

retained (Hensher et al., 2005). 

Data Collection 

It is difficult to exactly measure the number of vehicles diverting to alternative routes in a work 

zone construction site. In this study, tube detectors were strategically deployed in the road network 

surrounding a work zone. Traffic counts before and during the work zone construction were 

collected, and the difference between them was used to approximate the actual diversion rate in 

the field. The locations of the vehicle detectors were intended to cover major potential detours as 

well as the work zone site. Our research team initially identified three work zones located in both 

rural and urban areas. However, only one work zone site produced relatively reliable traffic counts 

and was adopted for the model recalibration in this study. It is also worth mentioning that limited 

useful data greatly restrict data analysis options available to us, but they justify the simplified 

model recalibration methodology proposed in the previous section.  

The remaining parts of this section describe the work zone site and data collection work. The 

work zone is located on SR-20 near Hawthorne in Alachua County. Figure 24 illustrates the 

locations of the work zone site and loop detectors deployed. The work zone construction site is 

located just east of detector 1 shown in this figure.  Detector 1 is intended to count traffic through 

the work zone site, while detectors 2 to 4 are used to capture traffic volumes on potential detour 

routes. 
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Figure 24.  SR-20 work zone site 

Traffic counts for both before- and during-construction periods were collected for three 

consecutive days in December 2012 and February 2013, respectively. Weather conditions during 

both periods were normal. Westbound traffic counts were collected and are shown in Table 8. 

 
Table 8.  Before and During Construction Traffic Counts (Westbound) 

 Before Construction (veh/day) During Construction (veh/day) 
Date Dec-18 Dec-19 Dec-20 Average Feb-19 Feb-20 Feb-21 Average 

Detector 1 3410 3568 3576 3518 3136 3292 3406 3278 
Detector 2 270 286 264 273 339 259 274 291 
Detector 3 33 42 33 36 66 53 50 56 
Detector 4 445 440 415 433 396 374 393 388 

 

It is estimated that roughly 240 vehicles (6.8%) diverted during the work zone construction time 

assuming the total travel demand remains the same before and during construction. Table 8 also 

shows that more traffic passed through detectors 2 and 3 during the construction time as expected. 

For detector 4, slightly fewer vehicles actually used this segment during the construction time, 

which indicates that travelers may have already diverted to detours upstream of this segment, 

which is not accounted for by the deployed detectors. Traffic counts of different days have been 

averaged to reduce the influence of daily demand variation, however, the impact of seasonal 
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demand variation cannot be eliminated since the before- and during-construction traffic counts 

were collected two months apart. 

Travel delays due to work zone construction directly influence travelers’ diversion decisions. 

A flag person on each end of the work zone controlled the construction site. Only vehicles from 

one direction were allowed to enter the work zone site at a time while vehicles from the other 

direction have to wait in queue. Therefore, the primary source of travel delay experienced by 

travelers is the queuing delay before vehicles actually enter the work zone site. In this study, data 

obtained from video were used to estimate the queuing delay. Queuing delays for 518 vehicles 

were extracted from video obtained at the construction site on February 21.  Table 9 shows the 

average queuing delays experienced by travelers. 

 
Table 9.  Average Queuing Delay (Westbound) 

Length of Lane 
Closure (miles) 

Posted Speed in 
Work Zone 

(mi/h) 

Average 
Queuing Delay 

(s/veh) 
0.904 55 206.52 

 

Data Analysis 

The utility functions of original (O) and alternative (A) routes obtained in Phase 1 are as follows: 

 ܷை ൌ െ0.5013 െ 0.1416ܶ ைܶ ൅ ைܮ0.7220 ൅ 0.3959 ைܹ ൅   [24]	ைߝ

 ஺ܷ ൌ െ0.1416ܶ ஺ܶ ൅  ஺ [25]ߝ

where 

TT = travel time 
L is a binary variable indicating the location of the work zone (ܮ ൌ 1 for rural work zone 

and ܮ ൌ 0 otherwise) 
W is a weather condition binary variable (ܹ ൌ 1 for normal weather conditions and ܹ ൌ

0 for bad weather conditions). 
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Based on the binary Logit model, the diversion rate can be calculated using the following 

equation: 

 ܲሺܣሻ ൌ
௘ೆಲ

௘ೆಲା௘ೆೀ
ൌ

ଵ

ଵା௘ሺೆೀషೆಲሻ
  [26] 

If the above equation is adopted in estimating the diversion rate for the work zone on SR-20, the 

estimated diversion rate is 24.90%. It is evident that the observed diversion rate (6.8%) is much 

lower than the estimated one, which coincides with the literature that models based on SP data 

tend to over-predict users’ responses. Following the methodology discussed previously, the 

constant coefficient associated with the original route, ߚை, is adjusted to solve the overestimation 

problem. Essentially, ߚை is treated as an unknown variable instead of a known constant and the 

diversion rate, ܲሺܣሻ, is set to equal to 6.8%. The equation to calculate the diversion rate is used to 

solve for an adjusted ߚை, and ߚை ൌ 1.013. Therefore, the new utility function for the original route 

can be recalibrated as: 

 ܷை ൌ 1.1013 െ 0.1416ܶ ைܶ ൅ ைܮ0.7220 ൅ 0.3959 ைܹ ൅  ை [27]ߝ

and the utility function for the alternative route remains unchanged. The sign of ߚை changed from 

negative in Phase 1 to positive. The newly recalibrated model implies that travelers have a general 

preference towards the original route and are not willing to divert to alternative routes, all things 

being equal.  

Summary 

This task aimed to refine the RTF model proposed in Phase 1 using field observed diversion data. 

The binary Logit model developed in Phase 1 was calibrated based on SP survey data, and SP data 

tend to overestimate the diversion rate in work zones. The aggregate traffic data collected in a 

work zone on SR-20 confirm this phenomenon. A simplistic methodology is adopted primarily 

due to limitations in data availability and quality. The constant coefficient associated with the 
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original route is adjusted to fix the overestimation problem while retaining the preference structure 

of the estimated route choice model. The recalibrated model was incorporated into the RTF 

modeling framework proposed in Phase 1 by updating the route choice model. 
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APPENDIX A 
DATA COLLECTED FROM FIELD SITES 

 
Table A-1.  Accepted and Rejected Gap Data for Determining Critical Gap at Site 1 

Gap 
Interval 

(sec) 

Midpoint of 
Gap Interval (t) 

(sec) 

Number of  
Gaps Accepted
Greater than t 

Number of 
Gaps Rejected

Less than t 

0 - 4.9 2.5 380 0 
5 - 9.9 7.5 173 0 

10 - 14.9 12.5 83 0 
15 - 19.9 17.5 53 2 
20 - 24.9 22.5 36 5 
25 - 29.9 27.5 27 13 
30 - 34.9 32.5 18 23 
35 - 39.9 37.5 10 29 
40 - 44.9 42.5 9 36 
45 - 49.9 47.5 9 48 
50 - 54.9 52.5 8 56 
55 - 59.9 57.5 6 63 

>= 60 300 4 164 
 
Table A-2.  Accepted and Rejected Gap Data for Determining Critical Gap at Site 2 

Gap 
Interval 

(sec) 

Midpoint of 
Gap Interval (t) 

(sec) 

Number of  
Gaps Accepted
Greater than t 

Number of 
Gaps Rejected

Less than t 

0 - 4.9 2.5 507 0 
5 - 9.9 7.5 203 0 

10 - 14.9 12.5 85 0 
15 - 19.9 17.5 57 1 
20 - 24.9 22.5 34 2 
25 - 29.9 27.5 20 6 
30 - 34.9 32.5 13 15 
35 - 39.9 37.5 9 20 
40 - 44.9 42.5 6 29 
45 - 49.9 47.5 3 41 
50 - 54.9 52.5 2 57 
55 - 59.9 57.5 2 67 

>= 60 300 2 207 
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Table A-3.  Accepted and Rejected Gap Data for Determining Critical Gap at Site 3 

Gap 
Interval 

(sec) 

Midpoint of 
Gap Interval (t) 

(sec) 

Number of  
Gaps Accepted
Greater than t 

Number of 
Gaps Rejected

Less than t 

0 - 4.9 2.5 1259 0 
5 - 9.9 7.5 354 0 

10 - 14.9 12.5 180 2 
15 - 19.9 17.5 101 8 
20 - 24.9 22.5 56 19 
25 - 29.9 27.5 24 40 
30 - 34.9 32.5 10 57 
35 - 39.9 37.5 3 79 
40 - 44.9 42.5 2 100 
45 - 49.9 47.5 0 121 
50 - 54.9 52.5 0 140 
55 - 59.9 57.5 0 146 

>= 60 300 0 210 
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Figure A-1: Example of Excel spreadsheet for video data from stationary cameras 
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Figure A-2: Example of Excel spreadsheet for video data from instrumented Honda Pilot 
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APPENDIX B 
PICTURES OF VEHICLE TYPES BY CATEGORY 

 
 

   
A 

 

   
B 

 

   
 C D 

Figure B-1.  Small trucks.  A) Panel truck.  B) Garbage truck.  C) Two-axle single-unit dump 
truck.  D) Small delivery truck.  E) Passenger cars with trailers 
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Figure B-1.  Continued 
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 A 
 

   
 B C 
  

   
 D E 
Figure B-2.  Medium trucks.  A) Three-axle single-unit dump truck.  B) Concrete mixer.  C) 

Passenger car with trailer using fifth wheel.  D) Delivery truck.  E) Single-unit cargo 
truck. 
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Figure B-3.  Large trucks.  A) Tractor plus trailer.  B) Tractor plus flatbed.  C) Buses. 
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Figure B-3.  Continued 
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APPENDIX C 
FLAGSIM USERS GUIDE 

 
 


